Preliminary communication

Reaction of lithium dimethyl cuprate with methyl 2,3-anhydro-5-deoxy-α-D ribofuranoside. A new, convenient route for preparation of 2,5-dideoxy-2-C-methyl-D-arabinofuranose derivatives

HIROSHI YAMAMOTO*, HIROSHI SASAKI, and SABURO INOKAWA

Department of Chemistry, Faculty of Science, Okayama University, Okayama 700 (Japan) (Received December 26th, 1981; accepted for publication, January 9th, 1982)

The use of sugars as chiral synthons in synthesizing a wide variety of complex natural products is of increasing interest¹. Nucleophilic reaction of 2,3-anhydro-D-ribo-furanosides is known to take place at C-2 or C-3, or both, depending upon steric and polar effects². We here describe a new, convenient route for preparation of the hitherto unreported 2,5-dideoxy-2-C-methyl- α -D-arabinofuranose derivatives (3 α and 4 α) as potential building blocks in the synthesis of macrolides and other natural products.

LiCuMe₂

$$H_3C$$

OMe + CH₃

OH

 CH_3

OH

Methyl 2,3-anhydro-5-deoxy- α -D-ribofuranoside (2 α) was prepared in 85% yield from methyl 5-deoxy-3-O-p-tolylsulfonyl- α -D-xylofuranoside (1 α), which was readily derived from D-xylose^{2,3}. Treatment of 2 α with lithium dimethyl cuprate (2.0 equiv.) in ether for 3 h at 0°, followed by the usual processing, gave a mixture of two sugars, separable in a column of silica gel with 1:49 (v/v) methanol—chloroform as the eluant.

^{*}To whom correspondence should be addressed.

The structures of the products were established, by their spectra, as methyl 2,5-dideoxy-2-C-methyl- α -D-arabinofuranoside (3 α) {a colorless oil; 54% yield; [α]_D¹⁵ +102° (c 1.29, CHCl₃); $\nu_{\rm max}^{\rm CHCl_3}$ 3500 cm⁻¹ (OH); m/z 146 (M⁺)}, and methyl 3,5-dideoxy-3-C-methyl- α -D-xylofuranoside (5 α) {a colorless oil; 10% yield; [α]_D +148° (c 1.35, CHCl₃); $\nu_{\rm max}^{\rm CHCl_3}$ 3540 cm⁻¹ (OH); m/z 146 (M⁺)}; the assignments for the ¹H-n.m.r. spectra of both compounds are recorded in Table I.

TABLE I

'H-N.M.R. PARAMETERS a FOR THE DIDEOXY-C-METHYL-PENTOFURANOSIDES IN CDCI.

Compound	MeO-1 H-1	Me-2 (HO-2) H-2	Me-3 (RO-3) H-3	H-4	H ₃ -5	J _{1,2}	J _{2,3}	J _{3,4}	J _{4,5}	J _{Me-CH}	Јно-сн
3∝	3.36 s	1.09 d	(2.8 brs)								
	4.62 d	2.14 qdd	3.40 dd	3.98 qd	1.31 d	1.8	3.5	4.8	6.5	7.0	
4α	3.35 s	1.15 d	(2.07 s)	•							
	4.59 d	2.1 qdd	4.41 dd	4.12 qd	1.34 d	1.0	3.2	5.5	6.1	7.6	
5α	3.48 s	(2.55 d)	0.98 d								
	4.84 d	3.79 ddd	2.28 qdd	4.36 dq	1.10 d	4.5	6.5	7.0	6.2	7.5	8.0

^a Chemical shifts (& values) in p.p.m. from Me₄Si. Coupling constants (I) in Hz.

The major product was treated with acetic anhydride in pyridine, to give the acetyl derivative 4α {a colorless oil; 80% yield; $[\alpha]_D^{15}$ +101° (c 1.15, CHCl₃); $\nu_{max}^{CHCl_3}$ 1730 cm⁻¹ (ester); m/z 188 (M⁺); ¹H-n.m.r. data, see Table I}, further confirming the structure of 3α .

On the other hand, the reaction of LiCuMe₂ with the β anomer 2β , obtained from 1β in 50% yield, did not produce the expected β isomer, 3β , or 5β . As 1α and 1β were equilibrated in acidic methanol (~9:11, respectively, based on the r.m.r. data) and were chromatographically separable, the 2-C-methyl-D-arabinofuranoses (3α and 4α) are more effectively prepared via 1α and 2α .

REFERENCES

- See, e.g., (a) S. Hanessian, Acc. Chem. Res., 12 (1979) 159-165; (b) B. Fraser-Reid and R. C. Anderson, Fortschr. Chem. Org. Naturst., 39 (1980) 1-61.
- 2 J. A. Montgomery, M. C. Thorpe, S. D. Clayton, and H. J. Thomas, Carbohydr. Res., 32 (1974) 404-407, and references cited therein.
- 3 H. Kuzuhara and S. Emoto, Agric. Biol. Chem., 27 (1963) 689-694; 28 (1964) 184-189.